Markscheme

May 2018

Sets, relations and groups

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must not be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Instructions to Examiners

Abbreviations

M Marks awarded for attempting to use a valid Method; working must be seen.
(M) Marks awarded for Method; may be implied by correct subsequent working.

A Marks awarded for an Answer or for Accuracy; often dependent on preceding M marks.
(A) Marks awarded for an Answer or for Accuracy; may be implied by correct subsequent working.

R Marks awarded for clear Reasoning.
N Marks awarded for correct answers if no working shown.
AG Answer given in the question and so no marks are awarded.

Using the markscheme

General

Mark according to RM $^{\text {TM }}$ Assessor instructions. In particular, please note the following:

- Marks must be recorded using the annotation stamps. Please check that you are entering marks for the right question.
- If a part is completely correct, (and gains all the "must be seen" marks), use the ticks with numbers to stamp full marks.
- If a part is completely wrong, stamp $\boldsymbol{A O}$ by the final answer.
- If a part gains anything else, it must be recorded using all the annotations.
- All the marks will be added and recorded by $\mathrm{RM}^{\mathrm{TM}}$ Assessor.

2 Method and Answer/Accuracy marks

- Do not automatically award full marks for a correct answer; all working must be checked, and marks awarded according to the markscheme.
- It is not possible to award MO followed by $\boldsymbol{A 1}$, as \boldsymbol{A} mark(s) depend on the preceding \boldsymbol{M} mark(s), if any.
- Where \boldsymbol{M} and \boldsymbol{A} marks are noted on the same line, eg M1A1, this usually means $\boldsymbol{M} 1$ for an attempt to use an appropriate method (eg substitution into a formula) and $\boldsymbol{A 1}$ for using the correct values.
- Where the markscheme specifies (M2), N3, etc., do not split the marks.
- Once a correct answer to a question or part-question is seen, ignore further correct working. However, if further working indicates a lack of mathematical understanding do not award the final A1. An exception to this may be in numerical answers, where a correct exact value is followed by an incorrect decimal. However, if the incorrect decimal is carried through to a subsequent part, and correct $\boldsymbol{F T}$ working shown, award $\boldsymbol{F T}$ marks as appropriate but do not award the final $\boldsymbol{A 1}$ in that part.

Examples

	Correct answer seen	Further working seen	Action
1.	$8 \sqrt{2}$.65685... (incorrect decimal value)	Award the final $\boldsymbol{A 1}$ (ignore the further working)
2.	$\frac{1}{4} \sin 4 x$	$\sin x$	Do not award the final $\boldsymbol{A 1}$
3.	$\log a-\log b$	$\log (a-b)$	Do not award the final $\boldsymbol{A 1}$

N marks

Award \mathbf{N} marks for correct answers where there is no working.

- Do not award a mixture of \boldsymbol{N} and other marks.
- There may be fewer \boldsymbol{N} marks available than the total of $\boldsymbol{M}, \boldsymbol{A}$ and \boldsymbol{R} marks; this is deliberate as it penalizes candidates for not following the instruction to show their working.

Implied marks

Implied marks appear in brackets eg (M1), and can only be awarded if correct work is seen or if implied in subsequent working.

- Normally the correct work is seen or implied in the next line.
- Marks without brackets can only be awarded for work that is seen.

Follow through marks

Follow through (FT) marks are awarded where an incorrect answer from one part of a question is used correctly in subsequent part(s). To award FT marks, there must be working present and not just a final answer based on an incorrect answer to a previous part.

- If the question becomes much simpler because of an error then use discretion to award fewer FT marks.
- If the error leads to an inappropriate value ($e g \sin \theta=1.5$), do not award the mark(s) for the final answer(s).
- Within a question part, once an error is made, no further dependent \boldsymbol{A} marks can be awarded, but \boldsymbol{M} marks may be awarded if appropriate.
- Exceptions to this rule will be explicitly noted on the markscheme.

6
 Misread

If a candidate incorrectly copies information from the question, this is a misread (MR). A candidate should be penalized only once for a particular misread. Use the MR stamp to indicate that this has been a misread. Then deduct the first of the marks to be awarded, even if this is an M mark, but award all others so that the candidate only loses [1 mark].

- If the question becomes much simpler because of the MR, then use discretion to award fewer marks.
- If the MR leads to an inappropriate value (eg $\sin \theta=1.5$), do not award the mark(s) for the final answer(s).

$7 \quad$ Discretionary marks (d)

An examiner uses discretion to award a mark on the rare occasions when the markscheme does not cover the work seen. In such cases the annotation DM should be used and a brief note written next to the mark explaining this decision.

8 Alternative methods

Candidates will sometimes use methods other than those in the markscheme. Unless the question specifies a method, other correct methods should be marked in line with the markscheme. If in doubt, contact your team leader for advice.

- Alternative methods for complete questions are indicated by METHOD 1, METHOD 2, etc.
- Alternative solutions for part-questions are indicated by EITHER . . . OR.
- Where possible, alignment will also be used to assist examiners in identifying where these alternatives start and finish.

Alternative forms

Unless the question specifies otherwise, accept equivalent forms.

- As this is an international examination, accept all alternative forms of notation.
- In the markscheme, equivalent numerical and algebraic forms will generally be written in brackets immediately following the answer.
- In the markscheme, simplified answers, (which candidates often do not write in examinations), will generally appear in brackets. Marks should be awarded for either the form preceding the bracket or the form in brackets (if it is seen).

Example: for differentiating $f(x)=2 \sin (5 x-3)$, the markscheme gives:

$$
\begin{equation*}
f^{\prime}(x)=(2 \cos (5 x-3)) 5 \quad(=10 \cos (5 x-3)) \tag{A1}
\end{equation*}
$$

Award $\boldsymbol{A 1}$ for $(2 \cos (5 x-3)) 5$, even if $10 \cos (5 x-3)$ is not seen.

10 Accuracy of Answers

Candidates should NO LONGER be penalized for an accuracy error (AP).
If the level of accuracy is specified in the question, a mark will be allocated for giving the answer to the required accuracy. When this is not specified in the question, all numerical answers should be given exactly or correct to three significant figures. Please check work carefully for FT.

11 Crossed out work
If a candidate has drawn a line through work on their examination script, or in some other way crossed out their work, do not award any marks for that work.

12 Calculators
A GDC is required for paper 3, but calculators with symbolic manipulation features (eg TI-89) are not allowed.

Calculator notation The mathematics HL guide says:
Students must always use correct mathematical notation, not calculator notation.
Do not accept final answers written using calculator notation. However, do not penalize the use of calculator notation in the working.

13 More than one solution

Where a candidate offers two or more different answers to the same question, an examiner should only mark the first response unless the candidate indicates otherwise.

1. (a) closure: there are no new elements in the table

A1
A1
identity: 6 is the identity element
inverse: every element has an inverse because there is a 6
in every row and column ($2^{-1}=8,4^{-1}=4,6^{-1}=6,8^{-1}=2$)
A1
we are given that (modulo) multiplication is associative
R1
so $\left\{T, \times_{10}\right\}$ is a group
(b) the Cayley table is symmetric (about the main diagonal)
so T is Abelian
R1
AG
[1 mark]
(c) (i) considering powers of elements
(M1)

elements	order
2	4
4	2
6	1
8	4

Note: Award A2 for all correct and A1 for one error.
(ii) EITHER
$\left\{T, \times_{10}\right\}$ is cyclic because there is an element of order 4
R1
Note: Accept "there are elements of order 4".
OR
$\left\{T, \times_{10}\right\}$ is cyclic because there is a generator
Note: Accept "because there are generators".
THEN
2 and 8 are generators
A1A1
continued...

Question 1 continued

(d) EITHER
considering singular elements
5 has no inverse ($5 \times_{10} a=1, a \in V$ has no solution)

OR

considering Cayley table for $\left\{V, \times_{10}\right\}$

\times_{10}	1	3	5	7	9
1	1	3	5	7	9
3	3	9	5	1	7
5	5	5	5	5	5
7	7	1	5	9	3
9	9	7	5	3	1

the Cayley table is not a Latin square (or equivalent)

OR

considering cancellation law
eg, $5 \times_{10} 9=5 \times_{10} 1=5$
M1
if $\left\{V, \times_{10}\right\}$ is a group the cancellation law gives $9=1$

OR

considering order of subgroups
$\begin{array}{ll}\text { eg, }\{1,9\} \text { is a subgroup } & \text { M1 } \\ \text { it is not possible to have a subgroup of order } 2 \text { for a group of } \\ \text { order } 5 \text { (Lagrange's theorem) } & \text { R1 }\end{array}$

THEN

so $\left\{V, \times_{10}\right\}$ is not a group $A G$
2. (a) (i) EITHER

$$
\begin{equation*}
(A \cup B) \cap(A \cup C)=\{1,2,3,5,7,9,11\} \cap\{1,3,5,7,9,15,31\} \tag{M1A1}
\end{equation*}
$$

OR
$A \cup(B \cap C)=\{1,3,5,7,9\} \cup\{3,7\}$
M1A1

OR
$B \cap C$ is contained within A (M1)A1

THEN

$=\{1,3,5,7,9\}(=A)$

Note: Accept a Venn diagram representation.

(ii) $\quad A \backslash C=\{5,9\}$
A1
$C \backslash A=\{15,31\}$
A1
so $A \backslash C \neq C \backslash A$
AG

Note: Accept a Venn diagram representation.

Question 2 continued

(b) METHOD 1
if $S=\varnothing$ then $n=0$ and the number of subsets of S is given by $2^{0}=1$
if $n>0$
for every subset of S, there are 2 possibilities for each element $x \in S$
either x will be in the subset or it will not
so for all n elements there are $(2 \times 2 \times \ldots \times 2=) 2^{n}$ different choices
in forming a subset of S
R1
so S has 2^{n} subsets $A G$

Note: If candidates attempt induction, award $\boldsymbol{A 1}$ for case $n=0, \boldsymbol{R} 1$ for setting up the induction method (assume $P(k)$ and consider $P(k+1)$) and $\boldsymbol{R} 1$ for showing how the $P(k)$ true implies $P(k+1)$ true $)$.

METHOD 2

$\sum_{k=0}^{n}\binom{n}{k}$ is the number of subsets of S (of all possible sizes from 0 to n) R1
$(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(1^{k}\right)\left(1^{n-k}\right)$ M1
$2^{n}=\sum_{k=0}^{n}\binom{n}{k}(=$ number of subsets of $S)$
so S has 2^{n} subsets
AG
[3 marks]

Total [8 marks]

3. (a) (i) (for $x \in \mathbb{R}),|x|+|x|=2|x| \quad$ A1
and $|x+x|=|2 x|=2|x| \quad$ A1
hence $x R x$
so R is reflexive
AG
Note: Award $\boldsymbol{A 1}$ for correct verification of identity for $x>0$; A1 for correct verification for $x \leq 0$.
(ii) if $x R y \Rightarrow|x|+|y|=|x+y|$
$|x|+|y|=|y|+|x|$
$|x+y|=|y+x|$
hence $y R x$
so R is symmetric
$A G$

Question 3 continued
(b) recognising a condition where transitivity does not hold
(eg, $x>0, y=0$ and $z<0$)
for example, $1 R 0$ and $0 R(-1)$
however $|1|+|-1| \neq|1+-1|$
so $1 R(-1)$ (for example) is not true $\boldsymbol{R 1}$
hence R is not transitive $A G$
4. (a) number of possible permutations is $4 \times 3 \times 2 \times 1$
$=24$ ($=4$!)
(b) attempting to find one of $p_{1} \circ p_{1}, p_{1} \circ p_{2}$ or $p_{2} \circ p_{1}$
$p_{1} \circ p_{1}=(132)$ or equivalent (eg, $p_{1}^{-1}=(132)$)
$p_{1} \circ p_{2}=(13)$ or equivalent (eg, $\left.p_{2} \circ p_{1} \circ p_{1}=(13)\right)$
$p_{2} \circ p_{1}=(23)$ or equivalent (eg, $\left.p_{1} \circ p_{1} \circ p_{2}=(23)\right)$
Note: Award A1A0AO for one correct permutation in any form;
A1A1AO for two correct permutations in any form.
$e=(1), p_{1}=(123)$ and $p_{2}=(12)$
Note: Condone omission of identity in cycle form as long as it is clear it is considered one of the elements of H.
(c) METHOD 1
if f is a homomorphism $f\left(p_{1} \circ p_{2}\right)=f\left(p_{1}\right) \circ f\left(p_{2}\right)$
attempting to express one of $f\left(p_{1} \circ p_{2}\right)$ or $f\left(p_{1}\right) \circ f\left(p_{2}\right)$ in terms of p_{1} and p_{2}
$f\left(p_{1} \circ p_{2}\right)=p_{1} \circ p_{2} \circ p_{1} \circ p_{2} \quad$ A1
$f\left(p_{1}\right) \circ f\left(p_{2}\right)=p_{1} \circ p_{1} \circ p_{2} \circ p_{2} \quad \boldsymbol{A 1}$
$\Rightarrow p_{2} \circ p_{1}=p_{1} \circ p_{2} \quad$ A1
but $p_{1} \circ p_{2} \neq p_{2} \circ p_{1} \quad$ R1
so f is not a homomorphism AG
Note: Award R1 only if M1 is awarded.
Note: Award marks only if p_{1} and p_{2} are used; cycle form is not required.

Question 4 continued

METHOD 2

if f is a homomorphism $f\left(p_{1} \circ p_{2}\right)=f\left(p_{1}\right) \circ f\left(p_{2}\right)$
attempting to find one of $f\left(p_{1} \circ p_{2}\right)$ or $f\left(p_{1}\right) \circ f\left(p_{2}\right) \quad$ M1
$f\left(p_{1} \circ p_{2}\right)=e \quad \boldsymbol{A 1}$
$f\left(p_{1}\right) \circ f\left(p_{2}\right)=(132)$
so $f\left(p_{1} \circ p_{2}\right) \neq f\left(p_{1}\right) \circ f\left(p_{2}\right) \quad$ R1
so f is not a homomorphism AG
Note: Award R1 only if both M1s are awarded.
Note: Award marks only if p_{1} and p_{2} are used; cycle form is not required.
5. (a) METHOD 1

$$
\begin{equation*}
(f \circ f)(n)=n+(-1)^{n}+(-1)^{n+(-1)^{n}} \quad \text { M1A1 } \tag{A1}
\end{equation*}
$$

$=n+(-1)^{n}+(-1)^{n} \times(-1)^{(-1)^{n}}$
considering $(-1)^{n}$ for even and odd n
if n is odd, $(-1)^{n}=-1$ and if n is even, $(-1)^{n}=1$ and so $(-1)^{ \pm 1}=-1$
$=n+(-1)^{n}-(-1)^{n}$
$=n$ and so $f \circ f$ is the identity function

METHOD 2

$$
\begin{array}{lr}
(f \circ f)(n)=n+(-1)^{n}+(-1)^{n+(-1)^{n}} & \text { M1A1 } \\
=n+(-1)^{n}+(-1)^{n} \times(-1)^{(-1)^{n}} & \text { (A1) } \\
=n+(-1)^{n} \times\left(1+(-1)^{(-1)^{n}}\right) & \text { M1 } \tag{A1}\\
(-1)^{ \pm 1}=-1 & \boldsymbol{R 1} \\
1+(-1)^{(-1)^{n}}=0 & \boldsymbol{A 1} \\
(f \circ f)(n)=n \text { and so } f \circ f \text { is the identity function } & \boldsymbol{A G}
\end{array}
$$

Question 5 continued

METHOD 3

$(f \circ f)(n)=f\left(n+(-1)^{n}\right) \quad$ M1
considering even and odd $n \quad$ M1
if n is even, $f(n)=n+1$ which is odd A1
so $(f \circ f)(n)=f(n+1)=(n+1)-1=n \quad$ A1
if n is odd, $f(n)=n-1$ which is even A1
so $(f \circ f)(n)=f(n-1)=(n-1)+1=n \quad$ A1
$(f \circ f)(n)=n$ in both cases
hence $f \circ f$ is the identity function \quad AG
(b) (i) suppose $f(n)=f(m)$
applying f to both sides $\Rightarrow n=m \quad$ R1 hence f is injective AG
(ii) $\quad m=f(n)$ has solution $n=f(m)$ R1 hence surjective

